Metamathematical investigations on the theory of Grossone

نویسنده

  • Gabriele Lolli
چکیده

We propose an axiomatization of Sergeyev’s theory of Grossone, trying to comply with his methodological principles. We find that a simplified form of his Divisibility axiom is sufficient. We use for easier readability a second order language and a predicative second order logic. Our theory is not finitely axiomatizable and is a conservative extension of Peano’s arithmetic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibonacci words, hyperbolic tilings and grossone

In this paper, we study the contribution of the theory of grossone to the study of infinite Fibonacci words, combining this tool with the help of a particular tiling of the hyperbolic plane : the tiling {7, 3}, called the heptagrid. With the help of the numeral system based on grossone, we obtain a richer family of infinite Fibonacci words compared with the traditional approach. ACM-class: F.2....

متن کامل

A Trivial Formalization of the Theory of Grossone

A trivial formalization is given for the informal reasonings presented in a series of papers by Ya.D. Sergeyev on a positional numeral system with an infinitely large base, grossone; the system which is groundlessly opposed by its originator to the classical nonstandard analysis. Mathematics Subject Classification (2000): 26E35.

متن کامل

Numerical computations with infinities and infinitesimals

The lecture presents a recent methodology allowing one to execute numerical computations with finite, infinite, and infinitesimal numbers on a new type of a computer – the Infinity Computer – patented in EU, USA, and Russia (see [20]). The new approach is based on the principle ‘The whole is greater than the part’ (Euclid’s Common Notion 5) that is applied to all numbers (finite, infinite, and ...

متن کامل

Usage of infinitesimals in the Menger's Sponge model of porosity

The present work concerns the calculation of the infinitesimal porosity by using the Menger’s Sponge model. This computation is based on the grossone theory considering the pore volume estimation for the Menger’s Sponge and afterwards the classical definition of the porosity, given by the ratio between the volume of voids and the total volume (voids plus solid phase). The aim is to investigate ...

متن کامل

Infinigons of the hyperbolic plane and grossone

In this paper, we study the contribution of the theory of grossone to the study of infinigons in the hyperbolic plane. We can see that the theory of grossone can help us to obtain a much more classification for these objects than in the traditional setting. ACM-class: F.2.2., F.4.1, I.3.5 keywords: tilings, hyperbolic plane, infinigons, grossone In [3], an algorithmic approach to the infinigons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 255  شماره 

صفحات  -

تاریخ انتشار 2015